Research on Intrusion Detection Model of Heterogeneous Attributes Clustering

نویسندگان

  • Linquan Xie
  • Ying Wang
  • Fei Yu
  • Chen Xu
  • Guangxue Yue
چکیده

A fuzzy clustering algorithm for intrusion detection based on heterogeneous attributes is proposed in this paper. Firstly, the algorithm modifies the comparability measurement for the categorical attributes according to the formula of Hemingway; then, for the shortages of fuzzy Cmeans clustering algorithm: initialize sensitively and easy to get into the local optimum, the presented new algorithm is optimized by GuoTao approach. We simulate our algorithm with the KDDCUP99 data set, and the results show that the convergence rate of the new algorithm is faster than the original fuzzy C-means clustering algorithm and the performance of our algorithm is more stable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Accuracy in Intrusion Detection Systems Using Classifier Ensemble and Clustering

Recently by developing the technology, the number of network-based servicesis increasing, and sensitive information of users is shared through the Internet.Accordingly, large-scale malicious attacks on computer networks could causesevere disruption to network services so cybersecurity turns to a major concern fornetworks. An intrusion detection system (IDS) could be cons...

متن کامل

A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System

In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...

متن کامل

Securing Cluster-heads in Wireless Sensor Networks by a Hybrid Intrusion Detection System Based on Data Mining

Cluster-based Wireless Sensor Network (CWSN) is a kind of WSNs that because of avoiding long distance communications, preserve the energy of nodes and so is attractive for related applications. The criticality of most applications of WSNs and also their unattended nature, makes sensor nodes often susceptible to many types of attacks. Based on this fact, it is clear that cluster heads (CHs) are ...

متن کامل

Intrusion Detection based on a Novel Hybrid Learning Approach

Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...

متن کامل

Intrusion Detection System Using K-SVMeans Clustering Algorithm

In recent years, as the usage of internet increases, new types of attack on network information keep increasing. Intrusion Detection System (IDS) is an important tool to identify various attacks to secure the networks. Traditional clustering algorithms work on “flat” data, making the assumption that the data instances are homogeneous in nature. Many real world data, however, is heterogeneous in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JSW

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012